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1. Introduction

String theory continues to provide the only viable framework for the unification of all

the known fundamental matter and interactions. Pivotal steps in this development were

the discoveries of anomaly cancellation in ten dimensions [1] and the subsequent realisation

that compactification to four dimensions yields the structures anticipated in Grand Unified

Theories [2]. Further studies revealed that the different string theories in ten dimensions,

together with eleven dimensional supergravity, probe, in fact, a single underlying theory [3].

The downside to these promising developments is that the compactification of string theory

to four dimensions yields a large number of possible vacua and, a priori, there does not

exist an apparent mechanism that selects among them.

On the other hand, the data extracted from collider, and other, experiments yielded

the Standard Particle Model as the correct accounting of all the observed data in the

accessible energy range. Furthermore, the particle physics data is compatible with the

hypothesis that the renormalisable Standard Model remains unaltered up to a large energy

scale and that the particle spectrum is embedded in a Grand Unified Theory [4]. Most

appealing in this context is SO(10) unification, in which each Standard Model generation

is embedded in a single 16 spinorial representation of SO(10). However, elucidating further

the properties of the Standard Model spectrum, such as the existence of flavor, necessitates

the unification of the Standard Particle Model with gravity.
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Spinorial representations of SO(10) are obtained in the heterotic string [5], but not

in the other perturbative limits of the underlying non perturbative theory. Thus, main-

taining the SO(10) embedding of the Standard Model spectrum necessitates that we study

compactifications of the heterotic string on internal six dimensional manifolds. However,

preserving the SO(10) embedding of the Standard Model spectrum in three generation

string vacua has proven to be an intricate challenge.

A particular class of four dimensional string models, that do yield three generations

with the canonical SO(10) embedding, are the heterotic string models in the so-called free

fermionic formulation [6]. The free fermionic formalism, however, is constructed directly in

four dimensions and the notion of a compactified manifold is a priori lost. The free fermionic

models, in general, correspond to Z2 × Z2 orbifolds at special points in the moduli space.

In specific cases one can make the correspondence precise [7], while in the general case it

is anticipated.

The correspondence of the free fermionic models with Z2×Z2 orbifolds therefore hinges

on these compactifications as the interesting ones to explore for phenomenological purposes.

Such studies were indeed pursued over the last few years [8]. However, only with partial

success, in the sense that, while three generation models were found they, did not yield the

standard SO(10) embedding of the Standard Model spectrum. Specifically, they did not

produce models in which the weak hypercharge has the canonical SO(10) normalisation.

The results of [8] suggest, however, that there is a vast number of three generation models if

discrete Wilson lines [9] are included into the construction. Indeed, on factorisable lattices,

the number of possible independent Wilson lines is six. The number of models is large such

that even a computer aided classification would be a quite formidable task. More intuition

from elsewhere is needed.

It is therefore drawn upon us to seek further insight from the free fermionic models.

The primary property of the free fermionic formulation is of being formulated a priori at

a maximally symmetric point in the toroidal lattice moduli space. The distinct feature is

that the enhanced lattice at the free fermionic point in the moduli space is a genuine T 6

lattice and is not factorisable to a product of three T 2 tori. The Z2×Z2 heterotic orbifolds

that have been constructed to date are all on factorisable lattices.

In this paper, we therefore extend these studies to Z2×Z2 orbifolds on non factorisable

lattices. We elucidate further the connection between the free fermionic models and Z2×Z2

orbifolds by demonstrating how the Z2 × Z2 fixed point structure is modified on non

factorisable orbifolds and, in the case of SO(12) lattice, matches that of the free fermionic

model. While this result has been known for some time, our discussion here is novel in the

sense that we demonstrate how the total number of fixed points on the SO(12) lattice is

reduced due to the SO(12) root lattice identifications. We then analyse Z2 × Z2 heterotic

orbifolds on other non factorisable lattices. We include Wilson lines in the analysis and

present one three generations model in this class. Our paper therefore represents important

advance in elucidating the geometrical correspondence of the free fermionic models, as well

as opening the investigation of new classes of Z2 × Z2 orbifolds.

The paper is organised as follows. In section two we review the free fermionic con-

struction, focusing especially on the features enabling a systematic approach to the search

– 2 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
7

for realistic models. The rest of the paper is then devoted to orbifold compactifications of

the heterotic string. These construction have been developed since the 1980s, e.g. in [9 –

15]. More recent studies focus on the geometric explanation of phenomenologically relevant

properties [8, 16 – 23].

Section three addresses the geometry of Z2 × Z2 orbifolds of non factorisable tori. In

particular the number of fixed tori is explicitly counted and computed via a Lefschetz

fixed point theorem for various examples. Further, the Euler number for all examples is

determined. In section four the geometric data are related to the number of generations

for standard embeddings. As predicted by index theorems, the net number of generations

always equals half the Euler number, whereas the number of fixed tori provides additional

information about the number of generations and anti-generations. In section five, we use

Wilson lines in order to construct an explicit three generation model with gauge group

SO(10). In contrast to the case of a T 6 factorising into three T 2 factors, one can easily

find models with one generation per twisted sector for non factorisable T 6. The reason is,

that for the latter, cycles exist which are invariant under none of the non trivial Z2 × Z2

elements. More details are given in section five. Finally, we finish with some concluding

remarks in section six.

2. Realistic free fermionic models

In this section we briefly discuss the general structure of the free fermionic models and

their correspondence with Z2 × Z2 heterotic orbifolds. The notation and details of the

construction of these models are given elsewhere [24 – 29].

In the free fermionic formulation, the 4-dimensional heterotic string, in the light-

cone gauge, is described by 20 left moving and 44 right moving real fermions. A large

number of models can be constructed by choosing different phases picked up by fermions

(fA, A = 1, . . . , 64) when transported along the torus non-contractible loops. Each model

corresponds to a particular choice of fermion phases consistent with modular invariance

that can be generated by a set of basis vectors bi, i = 1, . . . , n

bi = {bi(f1), bi(f2), bi(f3) . . . }

describing the transformation properties of each fermion

fA → −eiπbi(fA) fA, A = 1, . . . , 64 (2.1)

The basis vectors span a space Ξ which consists of 2n sectors that give rise to the string

spectrum. Each sector is given by

α =
∑

mibi, mi = 0, . . . , Ni (2.2)

The spectrum is truncated by a generalised GSO projection whose action on a string state

|S〉 is

eiπbi·FS |S〉 = δS c

[
S

bi

]∗
|S〉, (2.3)
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where FS is the fermion number operator and δS = ±1 is the spacetime spin statistics

index. Different sets of projection coefficients c
[S
bi

]
consistent with modular invariance give

rise to different models. A model is defined uniquely by a set of basis vectors bi, i = 1, . . . , n

and a set of 2n(n−1)/2 independent projection coefficients c
[bi

bj

]
, i > j.

The boundary condition basis set defining a typical realistic free fermionic heterotic

string model is constructed in two stages. The first stage consists of the NAHE set, which

is composed of five boundary condition basis vectors, {1, S, b1, b2, b3} [30, 28]. The gauge

group induced by the NAHE set is SO(10) × SO(6)3 × E8 with N = 1 supersymmetry.

The space-time vector bosons that generate the gauge group arise from the Neveu-Schwarz

sector and from the sector ξ2 ≡ 1 + b1 + b2 + b3. The Neveu-Schwarz sector produces

the generators of SO(10) × SO(6)3 × SO(16). The ξ2-sector produces the spinorial 128 of

SO(16) and completes the hidden gauge group to E8. The NAHE set divides the internal

world-sheet fermions in the following way: φ̄1,...,8 generate the hidden E8 gauge group,

ψ̄1,...,5 generate the SO(10) gauge group, and {ȳ3,...,6, η̄1}, {ȳ1, ȳ2, ω̄5, ω̄6, η̄2}, {ω̄1,...,4, η̄3}
generate the three horizontal SO(6) symmetries. The left-moving {y, ω} states are divided

into {y3,...,6}, {y1, y2, ω5, ω6}, {ω1,...,4} and χ12, χ34, χ56 generate the left-moving N = 2

world-sheet supersymmetry. At the level of the NAHE set, the sectors b1, b2 and b3 produce

48 multiplets, 16 from each, in the 16 representation of SO(10). The states from the sectors

bj are singlets of the hidden E8 gauge group and transform under the horizontal SO(6)j
(j = 1, 2, 3) symmetries. This structure is common to a large class of quasi-realistic free

fermionic models.

The second stage of the construction consists of adding to the NAHE set three (or

four) additional basis vectors. These additional vectors reduce the number of generations

to three, one from each of the sectors b1, b2 and b3, and simultaneously break the four di-

mensional gauge group. The assignment of boundary conditions to {ψ̄1,...,5} breaks SO(10)

to one of its subgroups SU(5)×U(1) [24], SO(6)×SO(4) [26], SU(3)×SU(2)×U(1)2 [25, 27],

SU(3) × SU(2)2 × U(1) [29] or SU(4) × SU(2) × U(1) [31]. Similarly, the hidden E8 sym-

metry is broken to one of its subgroups, and the flavor SO(6)3 symmetries are broken to

U(1)n, with 3 ≤ n ≤ 9. For details and phenomenological studies of these three gener-

ation string models we refer interested readers to the original literature and review arti-

cles [32].

The correspondence of the free fermionic models with the orbifold construction is

illustrated by extending the NAHE set, {1, S, b1, b2, b3}, by at least one additional boundary

condition basis vector [7]

ξ1 = (0, . . . , 0| 1, . . . , 1
︸ ︷︷ ︸

ψ̄1,...,5,η̄1,2,3

, 0, . . . , 0) . (2.4)

With a suitable choice of the GSO projection coefficients the model possesses an SO(4)3 ×
E6 × U(1)2 × E8 gauge group and N = 1 space-time supersymmetry. The matter fields

include 24 generations in the 27 representation of E6, eight from each of the sectors b1 ⊕
b1 + ξ1, b2 ⊕ b2 + ξ1 and b3 ⊕ b3 + ξ1. Three additional 27 and 27 pairs are obtained from

the Neveu-Schwarz ⊕ ξ1 sector.
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To construct the model in the orbifold formulation one starts with the compactification

on a torus with nontrivial background fields [33]. The subset of basis vectors

{1, S, ξ1, ξ2} (2.5)

generates a toroidally-compactified model with N = 4 space-time supersymmetry and

SO(12) × E8 × E8 gauge group. The same model is obtained in the geometric (bosonic)

language by tuning the background fields to the values corresponding to the SO(12) lattice.

The metric of the six-dimensional compactified manifold is then the Cartan matrix of

SO(12), while the antisymmetric tensor is given by

bij =







gij ; i > j,

0 ; i = j,

−gij ; i < j.

(2.6)

When all the radii of the six-dimensional compactified manifold are fixed at RI =
√

2, it

is seen that the left- and right-moving momenta

P I
R,L =

[

mi −
1

2
(Bij±Gij)nj

]

eI
i
∗

(2.7)

reproduce the massless root vectors in the lattice of SO(12). Here ei = {eI
i } are six

linearly-independent vielbeins normalised so that (ei)
2 = 2. The eI

i
∗

are dual to the ei,

with e∗i · ej = δij .

Adding the two basis vectors b1 and b2 to the set (2.5) corresponds to the Z2 × Z2

orbifold model with standard embedding. Starting from the N = 4 model with SO(12) ×
E8×E8 symmetry, and applying the Z2×Z2 twist on the internal coordinates, reproduces the

spectrum of the free-fermion model with the six-dimensional basis set {1, S, ξ1, ξ2, b1, b2} [7].

The Euler characteristic of this model is 48 with h11 = 27 and h21 = 3.

It is noted that the effect of the additional basis vector ξ1 of eq. (2.4), is to separate the

gauge degrees of freedom, spanned by the world-sheet fermions {ψ̄1,...,5, η̄1, η̄2, η̄3, φ̄1,...,8},
from the internal compactified degrees of freedom {y, ω|ȳ, ω̄}1,...,6. In the realistic free

fermionic models this is achieved by the vector 2γ [7], with

2γ = (0, . . . , 0| 1, . . . , 1
︸ ︷︷ ︸

ψ̄1,...,5,η̄1,2,3φ̄1,...,4

, 0, . . . , 0) , (2.8)

which breaks the E8 ×E8 symmetry to SO(16)× SO(16). The Z2 ×Z2 twist induced by b1

and b2 breaks the gauge symmetry to SO(4)3×SO(10)×U(1)3 ×SO(16). The orbifold still

yields a model with 24 generations, eight from each twisted sector, but now the generations

are in the chiral 16 representation of SO(10), rather than in the 27 of E6. The same model

can be realised [34] with the set {1, S, ξ1, ξ2, b1, b2}, by projecting out the 16⊕ 16 from the

ξ1-sector taking

c

[
ξ1

ξ2

]

→ −c

[
ξ1

ξ2

]

. (2.9)

– 5 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
7

This choice also projects out the massless vector bosons in the 128 of SO(16) in the hidden-

sector E8 gauge group, thereby breaking the E6×E8 symmetry to SO(10)×U(1)×SO(16).

We can define two N = 4 models generated by the set (2.5), Z+ and Z−, depending on

the sign in eq. (2.9). The first, say Z+, produces the E8 × E8 model, whereas the second,

say Z−, produces the SO(16)× SO(16) model. However, the Z2 ×Z2 twist acts identically

in the two models, and their physical characteristics differ only due to the discrete torsion

eq. (2.9).

Several remarks are important to note at this stage. The first is that a priori the

point at which the internal dimensions are realised as free fermions on the world-sheet is

a maximally symmetric point with an enhanced SO(12) lattice. This lattice is a priori not

factorisable to a product of three T 2 lattices, but is rather a non factorisable T 6 lattice. The

phenomenologically appealing properties of the free fermionic models and their relation to

Z2 × Z2 orbifolds provide the clue that we might gain further insight into the properties

of this class of quasi-realistic string compactifications by constructing Z2 ×Z2 orbifolds on

enhanced non factorisable lattices.

It is further important to note that the free fermionic formalism enables a classification

of a wide range of Z2×Z2 heterotic orbifolds. The correspondence illustrated above exhibits

in detail the correspondence of a single free fermionic model with a Z2 × Z2 orbifold in a

specific case. The correspondence in the general case is seen by analysing the respective

partition functions and it is anticipated that for every Z2 × Z2 orbifold one can write a

corresponding free fermionic partition function at special points in the moduli space, and

hence obtain a representation in terms of free fermion boundary condition basis vectors.

In turn, using the free fermion formalism the classification of Z2 × Z2 orbifolds is carried

out by specifying a set of boundary condition basis vectors and one-loop GSO coefficients.

The details of this classification for type II strings were carried in [35] and for the heterotic

string in [36].

The free fermionic formalism provides useful means to classify and analyse Z2 × Z2

heterotic orbifolds at special points in the moduli space. The drawbacks of this approach is

that the analysis is carried out at special points in the moduli space and the geometric view

of the underlying compactifications is hindered. On the other hand, the geometric picture

may be instrumental for examining other questions of interest, such as the dynamical

stabilisation of the moduli fields and the moduli dependence of the Yukawa couplings. In

the following we turn to analyse Z2 × Z2 orbifolds on non factorisable toroidal manifolds.

3. Z2 × Z2 orbifolds of non factorisable tori

In this section we discuss the Z2 × Z2 orbifold of non factorisable T 6 tori. We use a geo-

metrically intuitive picture that facilitates understanding the fixed point structure on these

lattices. We pay special attention to the identifications by the non factorisable root lat-

tice vectors and how the number of fixed tori is affected. Our discussion illuminates a long

standing puzzle in the orbifold community in regard to the Z2×Z2 orbifold correspondence

of the free fermionic models.
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In the following we will exemplarily discuss a set of compactifications on non factoris-

able six-tori. These will illustrate the main features of such compactifications. For more

systematic studies (from slightly different perspectives) see [7, 11, 38]. We will determine

the number of fixed tori once by explicit counting and once via a Lefschetz fixed point the-

orem. In addition, we give the Euler number of the orbifold. For the standard embedding

of the orbifold action into the gauge group the net number of generations will be fixed by

the Euler number, whereas the number of generations and anti-generations depends also

on the number of fixed tori. (For different orbifolds this is discussed in [39].)

We specify the Z2 ×Z2 orbifold action on a set of six Cartesian coordinates x1, . . . , x6

of the compact space as follows:






x1

...

x6




 → θ1






x1

...

x6




 , with θ1 =












−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1












(3.1)

and






x1

...

x6




 → θ2






x1

...

x6




 , with θ2 =












1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1












, (3.2)

where θ1 and θ2 are the generators of Z2 × Z2.

3.1 SO(12) lattice

As a first example, we consider the case that T 6 is obtained by compactifying R
6 on an

SO(12) root lattice whose basis vectors are given by the simple roots

e1 = (1,−1, 0, 0, 0, 0) ,

e2 = (0, 1,−1, 0, 0, 0) ,

e3 = (0, 0, 1,−1, 0, 0) ,

e4 = (0, 0, 0, 1,−1, 0) ,

e5 = (0, 0, 0, 0, 1,−1) ,

e6 = (0, 0, 0, 0, 1, 1) . (3.3)

The orbifold action, by e.g. (3.2), leaves sets of points invariant, i.e. these points differ

from their orbifold image by an SO(12) root lattice shift. For our particular choice of the

orbifold action these sets appear as two dimensional fixed tori. In the following we will list

16 such two-tori and afterwards argue that some of these 16 tori are identical. That will

leave us in the end with eight different two-tori.

– 7 –
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The trivial fixed torus is given as the set

{
(x, y, 0, 0, 0, 0)

∣
∣x, y ∈ R

2/Λ2
}

. (3.4)

The compactification lattice Λ2 is generated by the vectors (1, 1) and (1,−1). This can be

verified by writing

(x, y, 0, 0, 0, 0) = xe1 + (x + y)

(

e2 + e3 + e4 +
1

2
e5 +

1

2
e6

)

and identifying minimal shifts in (x, y) shifting the coefficients in front of lattice vectors

by integers.

Now, consider the fixed torus

{
(x, y, 1, 0, 0, 0)

∣
∣x, y ∈ R

2/Λ2
}

. (3.5)

Points on that torus differ from their image point by the lattice vector (0, 0, 2, 0, 0, 0). The

position of the 1 entry can be altered within the last four components by adding SO(12)

root vectors, e.g. (0, 0,−1, 1, 0, 0).

Next there are fixed tori of the form
{(

x, y,
1

2
,
1

2
, 0, 0

)
∣
∣ x, y ∈ R

2/Λ2

}

, (3.6)

where the underlined entries can be permuted. Points on these fixed tori differ from their

orbifold image by an SO(12) root, e.g. (0, 0, 1, 1, 0, 0). There are
(

4

2

)

= 6

such fixed two-tori.

Very similar fixed tori are

{(

x, y,
1

2
,−1

2
, 0, 0

)
∣
∣x, y ∈ R

2/Λ2

}

, (3.7)

where the position of the minus sign can be changed by lattice shifts ( (1/2,−1/2) +

(−1, 1) = (−1/2, 1/2)). This yields another set of six fixed tori.

Finally, there are the fixed tori
{(

x, y,
1

2
,
1

2
,
1

2
,
1

2

)
∣
∣x, y ∈ R

2/Λ2

}

(3.8)

and {(

x, y,
1

2
,
1

2
,
1

2
,−1

2

)
∣
∣x, y ∈ R

2/Λ2

}

. (3.9)

So, altogether we have listed 16 fixed tori. Now, we are going to argue that some

of them are equivalent. Consider the fixed torus (3.5) and add the SO(12) root vector

(1, 0,−1, 0, 0, 0). This yields an equivalent expression for (3.5)

{
(x + 1, y, 0, 0, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

. (3.10)

– 8 –
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But this is the same fixed torus as (3.4), merely the origin for the x coordinate has

been shifted by one. Similar arguments show that the tori in (3.6) and (3.7) as well as the

tori (3.8) and (3.9) are mutually equivalent. So, finally we are left with eight inequivalent

fixed tori.

For the Z2 × Z2 orbifold we add another Z2 action θ1 (3.1). For this Z2 × Z2 action

we obtain eight fixed tori under the action of θ1, eight fixed tori under the action of θ2 and

eight fixed tori under the action of θ1θ2. Hence, the total number of fixed tori is 24.

After the somewhat tricky explicit counting we would like to confirm our result by

using mathematical fixed point theorems. For the case of fixed tori the adequate Lefschetz

fixed point theorem for the number of fixed tori (# FT) reads [40]1

#FT =

∣
∣
∣
∣

N

(1 − θ)Λ

∣
∣
∣
∣
. (3.11)

On the rhs the index of a lattice quotient appears. The lattice in the denominator is a

sub-lattice of the lattice in the numerator and the index counts how often the fundamental

cell of the finer lattice fits into the one of the coarser one. In our case the coarser lattice is

(1 − θ)Λ, which is a sub-lattice of the compactification lattice Λ, obtained by projecting

with (1 − θ). The finer lattice is N , which is the lattice normal to the sub-lattice left

invariant by the action of θ. A more handy version of (3.11) is

#FT =
vol ((1 − θ)Λ)

vol (N)
, (3.12)

where the volumes of the fundamental cells appear on the rhs. These can be easily de-

termined by computing the induced metrics on the corresponding lattices. Now let us

illustrate the theorem at the case of θ2 fixed tori in the SO(12) lattice. First, we note that

1 − θ2 =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2












. (3.13)

A basis in the (1 − θ2)Λ lattice is

(1 − θ2) Λ :

(0, 0, 2, 0, 0, 0) ,

(0, 0, 0, 2, 0, 0) ,

(0, 0, 0, 0, 2, 0) ,

(0, 0, 0, 0, 0, 2) ,

(3.14)

where e.g. the first basis vector originates from the SO(12) root (1, 0, 1, 0, 0, 0). Hence, the

induced metric is four times a four by four unit matrix and the volume of the fundamental

cell can be obtained as the square root of its determinant

vol ((1 − θ2) Λ) = 16. (3.15)

1In our coordinate system the orbifold action is represented by symmetric matrices and in that case (3.11)

is equivalent to the expression given in [41] where a different calculation is described.
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The θ2 invariant lattice is spanned by (1, 1, 0, 0, 0, 0) and (1,−1, 0, 0, 0, 0). Hence, the

normal lattice is generated by simple SO(8) roots

N :

(0, 0, 1,−1, 0, 0) ,

(0, 0, 0, 1,−1, 0) ,

(0, 0, 0, 1,−1) ,

(0, 0, 0, 0, 1, 1) .

(3.16)

The induced metric is the SO(8) Cartan matrix








2 −1 0 0

−1 2 −1 −1

0 −1 2 0

0 −1 0 2








. (3.17)

The square root of the determinant of the induced metric provides the volume

vol (N) = 2. (3.18)

Plugging (3.15) and (3.18) into (3.12), we find that the number of θ2 fixed tori is eight,

confirming our earlier result, obtained by explicit counting. The calculation for the other

Z2 ×Z2 non trivial elements θ1 and θ1θ2 is a straightforward modification of the presented

calculation. Each element leaves eight tori fixed, yielding a total of 24 fixed tori.

Finally, we would like to compute the Euler number of the given orbifold. The general

expression for the Euler number χ is [10]

χ =
1

|G|
∑

[g,h]=0

χg,h, (3.19)

where |G| is the order of the orbifold group with elements g, h and χg,h is the number of

points which are simultaneously fixed under the action of g and h. (Here, it is important

that these are really points, if e.g. g = 1 then χ1,h provides the number of tori fixed under

h, which do not contribute to the Euler number.)

Now, let us identify points which are fixed under θ1 and θ2 in the case that the com-

pactification is on the SO(12) root lattice. One finds 32 such points:

(0, 0, 0, 0, 0, 0) 1 point,

(1, 0, 0, 0, 0, 0) 1 point,
(

1
2 ,±1

2 , 0, 0, 0, 0
)

+S3 6 points,
(

1
2 , 1

2 , 1
2 ,±1

2 , 0, 0
)

+S3 6 points,
(

1
2 , 1

2 , 1
2 , 1

2 , 1
2 ,±1

2

)
2 points,

(
1
2 , 0, 1

2 , 0,±1
2 , 0

)

16 points,

(3.20)

where “+S3” stands for adding vectors obtained by permuting the first, second and third

pair of entries and underlined entries can also be permuted. So, altogether, we find

χθ1,θ2
= 32. (3.21)
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This is four times the number of tori fixed under θ2. The counting for the other five

combinations of non-trivial Z2 × Z2 elements is the same and we end up with

χ = 48, (3.22)

which is twice the number of fixed tori.

3.2 SO(6)2 lattice — first example

Now, we choose for the T 6 compactification an SO(6)2 lattice with basis vectors

e1 = (1,−1, 0, 0, 0, 0) ,

e2 = (0, 1,−1, 0, 0, 0) ,

e3 = (0, 1, 1, 0, 0, 0) ,

e4 = (0, 0, 0, 1,−1, 0) ,

e5 = (0, 0, 0, 0, 1,−1) ,

e6 = (0, 0, 0, 0, 1, 1) . (3.23)

The determination of the fixed tori under θ2 is very similar to the previous case. First,

we point out the differences and then list the fixed tori. The fixed torus

{
(x, y, 0, 0, 0, 1)

∣
∣x, y ∈ R

2/Λ2
}

, (3.24)

is not equivalent to
{
(x, y, 0, 0, 0, 0)

∣
∣x, y ∈ R

2/Λ2
}

, (3.25)

since there is no lattice vector like (1, 0, 0, 0, 0,−1) in the SO(6)2 lattice. On the other

hand, the fixed torus
{
(x, y, 1, 0, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

(3.26)

is equivalent to (3.25) (via a shift with (1, 0,−1, 0, 0, 0) and a reparameterisation of the fixed

torus). It is not equivalent to (3.24) because the SO(12) lattice vector (0, 0,−1, 0, 0, 1) is

not in the SO(6)2 lattice. Taking this kind of arguments into account one finds the following

eight fixed tori under the action of θ2 (3.2)

{
(x, y, 0, 0, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

, 1 fixed torus, (3.27)
{
(x, y, 0, 0, 0, 1)

∣
∣ x, y ∈ R

2/Λ2
}

, 1 fixed torus, (3.28)
{(

x, y, 0,
1

2
,
1

2
, 0

)
∣
∣ x, y ∈ R

2/Λ2

}

, 3 fixed tori, (3.29)

{(

x, y, 0,
1

2
,−1

2
, 0

)
∣
∣ x, y ∈ R

2/Λ2

}

, 3 fixed tori, (3.30)

where underlined entries can be again permuted and the position of the minus sign within

the last three entries in (3.30) can be altered by lattice shifts.
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By swapping the two SO(6) factors, we obtain the following eight fixed tori under the

action of θ1 (3.1)

{
(0, 0, 0, 0, x, y)

∣
∣ x, y ∈ R

2/Λ2
}

, 1 fixed torus, (3.31)
{
(1, 0, 0, 0, x, y)

∣
∣ x, y ∈ R

2/Λ2
}

, 1 fixed torus, (3.32)
{(

1

2
,
1

2
, 0, 0, x, y

)
∣
∣ x, y ∈ R

2/Λ2

}

, 3 fixed tori, (3.33)

{(
1

2
,−1

2
, 0, 0, x, y

)
∣
∣ x, y ∈ R

2/Λ2

}

, 3 fixed tori. (3.34)

For the action of θ1θ2 the situation is different. As a first difference, we note that the

trivially fixed torus is {

(0, 0, x, y, 0, 0)
∣
∣
∣x, y ∈ R

2/Λ̃2
}

, (3.35)

with a modified lattice Λ̃2 which is generated by (2, 0) and (0, 2). (The point (0, 0, x, y, 0, 0)

= x
2 (e2 + e3)+ y

2 (2e4 + e5 + e6) on T 6 is invariant if x or y are shifted by integer multiples

of two.) This fixed torus is twice as big as the ones which occurred previously. Now the

fixed tori {

(1, 0, x, y, 0, 0)
∣
∣
∣ x, y ∈ R

2/Λ̃2
}

as well as {

(0, 0, x, y, 1, 0)
∣
∣
∣ x, y ∈ R

2/Λ̃2
}

are equivalent to the trivial one (by shifts with (1, 0,−1, 0, 0, 0) or (0, 0, 0, 1,−1, 0) and

redefinitions of the torus coordinates x or y). One finds four inequivalent fixed tori:

{

(0, 0, x, y, 0, 0)
∣
∣
∣ x, y ∈ R

2/Λ̃2
}

, 1 fixed torus, (3.36)
{(

1

2
,
1

2
, x, y, 0, 0

) ∣
∣
∣x, y ∈ R

2/Λ̃2

}

, 1 fixed torus, (3.37)

{(

0, 0, x, y,
1

2
,
1

2

) ∣
∣
∣x, y ∈ R

2/Λ̃2

}

, 1 fixed torus, (3.38)

{(
1

2
,
1

2
, x, y,

1

2
,
1

2

) ∣
∣
∣x, y ∈ R

2/Λ̃2

}

, 1 fixed torus. (3.39)

Hence, we obtain 20 fixed tori in total (eight under the action of θ1 and θ2 each and another

four from the action of θ1θ2).

Before rederiving this result using the Lefschetz theorem, let us comment on what

we found so far. The number of fixed tori under the action of θ1 and θ2 is the same as

for the SO(12) lattice. In fact, as long as we project only on the e.g. θ2 invariant states,

moduli allowing a deformation into the SO(12) lattice are still present in the spectrum. In

particular, the internal metric components, gIJ , with I, J ≥ 3 are even under the action

of θ1. The compactification lattice can be deformed within the x3-x4-x5-x6 ‘plane’. This

means that we can continuously deform e6 in (3.23 ) into (0, 0, 1, 1, 0, 0) yielding an SO(12)

lattice. Likewise, under θ1, moduli allowing a deformation within the x1-x2-x3-x4 ‘plane’

survive the projection. Replacing e2 with (0, 0, 1,−1, 0, 0) can be done in a continuous
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way, yielding again an SO(12) lattice. On the other hand, moduli which are even under

θ1θ2 allow for deformations within the x1-x2-x5-x6 and x3-x4 planes. Neither of the above

replacements yielding the SO(12) lattice corresponds to such a deformation. Thus our

findings for the numbers of fixed tori in the different sectors are compatible with possible

continuous deformations of the orbifold.

Now, we confirm the result obtained by explicit counting via the Lefschetz fixed point

theorem (3.11). First, we compute the number of fixed tori under θ2. A basis for the

(1 − θ2)Λ lattice is

(1 − θ2) Λ :

(0, 0, 2, 0, 0, 0) ,

(0, 0, 0, 2,−2, 0) ,

(0, 0, 0, 0, 2,−2) ,

(0, 0, 0, 0, 2, 2) .

(3.40)

The induced metric reads

4








1 0 0 0

0 2 −1 −1

0 −1 2 0

0 −1 0 2








. (3.41)

The square root of its determinant is 32. On the other hand the lattice normal to the

invariant lattice is

N :

(0, 0, 2, 0, 0, 0) ,

(0, 0, 0, 1,−1, 0) ,

(0, 0, 0, 0, 1,−1) ,

(0, 0, 0, 0, 1, 1) ,

(3.42)

resulting in the induced metric







4 0 0 0

0 2 −1 −1

0 −1 2 0

0 −1 0 2








, (3.43)

whose determinant is 42. Hence, the number of tori fixed under θ2 is 32/4 =8.

For the number of fixed tori under θ1 a completely analogous computation yields again

eight.

Now, consider the Z2 × Z2 generator θ1θ2 for which

(1 − θ1θ2) =












2 0 0 0 0 0

0 2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2












. (3.44)
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The lattice (1 − θ1θ2) Λ is spanned by the following basis

(1 − θ1θ2) Λ :

(2, 0, 0, 0, 0, 0) ,

(0, 2, 0, 0, 0, 0) ,

(0, 0, 0, 0, 2, 0) ,

(0, 0, 0, 0, 0, 2) .

(3.45)

Hence, the induced metric is just four times a four by four identity matrix. The square

root of its determinant being 16.

For the normal lattice we find

N :

(1,−1, 0, 0, 0, 0) ,

(1, 1, 0, 0, 0, 0) ,

(0, 0, 0, 0, 1,−1) ,

(0, 0, 0, 0, 1, 1) .

(3.46)

The metric induced on N is twice a four by four identity matrix. The square root of its

determinant is four. Hence, the number of fixed tori in that sector is 16/4 = 4.

In order to compute the Euler number we have to determine the points which are

left invariant under the action of two different non trivial elements of Z2 × Z2. For any

such combination we find that the third and fourth entry of the fixed point vector have to

vanish, whereas the first two and last two entries can be any of the following four choices

(0, 0) , (1, 0) ,

(
1

2
,±1

2

)

. (3.47)

Hence, we get

χθ1,θ2
= χθ1,θ1θ2

= χθ2,θ1θ2
= 16, (3.48)

Note, that this time e.g. χθ1,θ2
is not four times the number of tori fixed under θ1. For the

Euler number we obtain

χ = 24, (3.49)

which differs from twice the number of fixed tori.

3.3 SO(6)2 lattice — second example

Now, we consider a version of the previous compactification lattice which exhibits invariance

under permuting the x1-x2, x3-x4 and x5-x6 plane, i.e. we choose

e1 = (1, 0,−1, 0, 0, 0) ,

e2 = (0, 0, 1, 0,−1, 0) ,

e3 = (0, 0, 1, 0, 1, 0) ,

e4 = (0, 1, 0,−1, 0, 0) ,

e5 = (0, 0, 0, 1, 0,−1) ,

e6 = (0, 0, 0, 1, 0, 1) (3.50)

as a basis for the SO(6)2 lattice. For lattice vectors in the first (second) SO(6) factor only

odd (even) components can be non vanishing.
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For that compactification one finds the following four inequivalent fixed tori under the

action of θ2 (3.2):

{
(x, y, 0, 0, 0, 0)

∣
∣x, y ∈ R

2/Λ2
}

, 1 fixed torus, (3.51)
{(

x, y,
1

2
, 0,

1

2
, 0

)
∣
∣x, y ∈ R

2/Λ2

}

, 1 fixed torus, (3.52)

{(

x, y, 0,
1

2
, 0,

1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, 1 fixed torus, (3.53)

{(

x, y,
1

2
,
1

2
,
1

2
,
1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, 1 fixed torus. (3.54)

For θ1 and θ1θ2 one finds also four fixed tori each in a completely analogous way. So,

altogether there are 12 fixed tori. Now, a single projection with a non-trivial element of

Z2 × Z2 projects out moduli needed for deforming the lattice into the SO(12) lattice. The

orbifolds are disconnected.

The computation using the Lefschetz fixed point theorem (3.11) is similar to the last

case in the previous example. A basis for the (1 − θ2) Λ lattice is

(1 − θ2) Λ :

(0, 0, 2, 0, 0, 0) ,

(0, 0, 0, 2, 0, 0) ,

(0, 0, 0, 0, 2, 0) ,

(0, 0, 0, 0, 0, 2) ,

(3.55)

where the first basis vector originates e.g. from the SO(6)2 lattice vector (1, 0, 1, 0, 0, 0).

The volume of the fundamental cell is 16. The lattice normal to the invariant lattice has

the following basis:

N :

(0, 0, 1, 0,−1, 0) ,

(0, 0, 1, 0, 1, 0) ,

(0, 0, 0, 1, 0,−1) ,

(0, 0, 0, 1, 0, 1) .

(3.56)

The volume of the fundamental cell of N is four. Hence, the number of fixed tori under θ1

is 16/4 = 4. The computation for θ1 and θ1θ2 is analogous and yields four fixed tori for

each of them.

The points which are fixed under any two non-trivial elements of Z2×Z2 can be written

as

(a1, b1, a2, b2, a3, b3) , (3.57)

where (a1, a2, a3) and (b1, b2, b3) can be any of the following four triplets

(0, 0, 0) , (1, 0, 0) ,

(
1

2
,
1

2
,±1

2

)

. (3.58)

This gives 16 such points which is four times the number of tori fixed under a single

non-trivial Z2 × Z2 element. The Euler number is

χ = 24, (3.59)

which is twice the number of all fixed tori.

– 15 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
7

3.4 SU(3)3 lattice

Here, we give a second example for which the total number of fixed tori differs from half

the Euler number. The basis for the compactification lattice is given by simple roots of

SU(3)3

e1 =
(√

2, 0, 0, 0, 0, 0
)

,

e2 =

(

− 1√
2
, 0, 0,

√

3

2
, 0, 0

)

,

e3 =
(

0,
√

2, 0, 0, 0, 0
)

,

e4 =

(

0,− 1√
2
, 0, 0,

√

3

2
, 0

)

,

e5 =
(

0, 0,
√

2, 0, 0, 0
)

,

e6 =

(

0, 0,− 1√
2
, 0, 0,

√

3

2

)

. (3.60)

For the above SU(3)3 lattice one finds four fixed tori per Z2 × Z2 twist. For instance,

the θ2 fixed tori are given by
{

(x, y, 0, 0, 0, 0)
∣
∣
∣ x, y ∈ R

2/Λ̃2/
√

2
}

, 1 fixed torus, (3.61)
{(

x, y,
1√
2
, 0, 0, 0

) ∣
∣
∣x, y ∈ R

2/Λ̃2/
√

2

}

, 1 fixed torus, (3.62)

{(

x, y,− 1

2
√

2
, 0, 0,

1

2

√

3

2

)
∣
∣
∣x, y ∈ R

2/Λ̃2/
√

2

}

, 1 fixed torus, (3.63)

{(

x, y,
1

2
√

2
, 0, 0,

1

2

√

3

2

)
∣
∣
∣x, y ∈ R

2/Λ̃2/
√

2

}

, 1 fixed torus. (3.64)

In a similar fashion one finds four fixed tori also for the other two non-trivial elements of

Z2 × Z2 yielding to a total number of twelve fixed tori.

In the following we compute the number of tori invariant under the action of θ2 using

the Lefschetz fixed point theorem (3.11). The lattice (1 − θ2) Λ is generated by

(1 − θ2) Λ :

(
0, 0, 2

√
2, 0, 0, 0

)
,

(

0, 0, 0, 2
√

3
2 , 0, 0

)

,
(

0, 0, 0, 0, 2
√

3
2 , 0

)

,
(

0, 0,−
√

2, 0, 0, 2
√

3
2

)

.

(3.65)

Hence, the induced metric is







8 0 0 −4

0 6 0 0

0 0 6 0

−4 0 0 8








,

with determinant 36·48.
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The lattice N normal to the invariant lattice is

N :

(
0, 0,

√
2, 0, 0, 0

)
,

(

0, 0, 0, 2
√

3
2 , 0, 0

)

,
(

0, 0, 0, 0, 2
√

3
2 , 0

)

,
(

0, 0,−
√

2
2 , 0, 0,

√
3
2

)

,

(3.66)

with the induced metric 






2 0 0 −1

0 6 0 0

0 0 6 0

−1 0 0 2








,

whose determinant is 36·3. The number of fixed tori is the square root of the ratio of the

two determinants which is four in the considered case. Taking into account also the other

Z2 × Z2 twists we find 12 fixed tori altogether.

There are eight points on the lattice which are invariant under θ1 and θ2. They are

of the form that the last three entries of their position vector vanish whereas each of the

first three entries can be either zero or
√

2/4. Doing similar countings also for the other

combinations of Z2 × Z2 elements leads finally to the Euler number,

χ = 12, (3.67)

which differs from twice the number of fixed tori.

4. Standard embedding

Now, we consider heterotic E8×E8 theory compactified on the previously discussed orb-

ifolds. The massless spectrum in four dimensions does not contain winding or momentum

modes (away from the selfdual point). To a large extent, the calculation of the spectrum is

independent of the compactification lattice. The lattice enters via its fixed point structure

as will be seen shortly.

In this section, we focus on the standard embedding of the orbifold action into the

gauge group. In that case the spin connection is related to the gauge connection. This

implies that the index of the Dirac operator is fixed by the Euler number which therefore

equals twice the number of generations [10, 11].

First, let us summarise what is known from previous calculations [42, 8]. The un-

twisted sector provides geometric moduli, vector multiplets containing the gauge fields for

an unbroken

E6 × U(1)2 × E′
8 (4.1)

symmetry. Further, there are three chiral multiplets transforming in the 27 and three

chiral multiplets in the 27 of E6 (we suppress U(1) charges). In addition there are six

singlets.
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Each non-trivial element of Z2 × Z2 gives rise to twisted sector states localised to the

corresponding fixed tori. Fields appearing in the bulk of a fixed torus are even under the

Z2 element leaving that torus invariant. The remaining Z2×Z2 elements relate field values

at a point to values at an image point and act as projections if the argument of the field is

a fixed point.

The gauge group in the bulk of the fixed tori is

E7 × SU(2) × E′
8.

The twisted sector gives rise to bulk matter (hypermultiplets) transforming in the (56,1)

plus (1,2) of E7×SU(2) (w.r.t. the hidden E′
8 all matter fields are singlets).

The remaining Z2 projection reduces the bulk gauge group to the group unbroken in

four dimensions (4.1). The projections on the twisted matter depend on the compactifica-

tion lattice2. Let us first state what happens in the well studied case that the underlying

T 6 factorises into three T 2 factors [42, 8]. In that case the hypermultiplet in the (56,1)

plus (1,2) is projected to a chiral multiplet in the 27 of E6 and five more chiral multiplets

which are E6 singlets. Since this happens for each fixed torus, the number of generations

is equal to the number of fixed tori, which is 48 in the considered case.

On the other hand, the net number of generations follows from an index theorem to

be half the Euler number. So, the statement that the number of generations equals the

number of fixed tori cannot be true in general (not even in Z2×Z2 orbifolds) since we have

seen that, in certain cases, the two numbers do not agree. (For the example considered

above the Euler number is 96 and the result is consistent.)

In the following we will have a closer look at the projections of bulk matter of a θi fixed

torus, focusing on matter coming from the θi twisted sector. First, we study the example

from section 3.1 (compactification lattice equals SO(12) root lattice) for which the Euler

number is twice the number of fixed tori.

The θ2 twisted sector provides eight hypermultiplets in the (56,1) + (1,2) of E7×SU(2),

one on each of the 8 fixed tori

{
(x, y, 0, 0, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

, 1 fixed torus, (4.2)
{(

x, y,
1

2
,
1

2
, 0, 0

)
∣
∣x, y ∈ R

2/Λ2

}

, 6 fixed tori, (4.3)

{(

x, y,
1

2
,
1

2
,
1

2
,
1

2

)
∣
∣ x, y ∈ R

2Λ2

}

, 1 fixed torus. (4.4)

Now, we discuss at which points θ1 invariance provides projection conditions on these

hypermultiplets. First, consider the fixed tori of the form

{
(x, y, 0, 0, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

,
{(

x, y,
1

2
,
1

2
, 0, 0

)
∣
∣x, y ∈ R

2/Λ2

}

,

2In technical terms: The centraliser [10] of a space group element depends on the compactification

lattice.
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{(

x, y, 0, 0,
1

2
,
1

2

)
∣
∣x, y ∈ R

2/Λ2

}

,

{(

x, y,
1

2
,
1

2
,
1

2
,
1

2

)
∣
∣ x, y ∈ R

2/Λ2

}

. (4.5)

Taking into account SO(12) lattice shifts θ1 maps a point on one of these tori to a point

on the same torus with (x, y) → −(x, y). Projection conditions thus arise at the points for

which

(x, y) = −(x, y) mod Λ2,

which is satisfied for the following four points

(0, 0),

(
1

2
,−1

2

)

,

(
1

2
,
1

2

)

, (1, 0). (4.6)

Imposing invariance under θ1 at these points reduces the hypermultiplets to chiral ones in

27 of E6 and singlets. So, each of the four tori in (4.5) gives rise to one generation.

Points on the remaining four fixed tori transform as

(

x, y,
1

2
, 0,

1

2
, 0

)
θ1−→

(

−x,−y,−1

2
, 0,

1

2
, 0

)

≡
(

−x + 1,−y,
1

2
, 0,

1

2
, 0

)

, (4.7)

where in the last step equivalence under shifts by the SO(12) lattice vectors

(
1, 0, 0, 1, 0, 0, 0

)
(4.8)

has been employed. Thus θ1 maps a point on a fixed torus to itself if (x, y) is at one of the

following four points3

(
1

2
, 0

)

,

(
3

2
,
1

2

)

,

(
3

2
,−1

2

)

,

(
3

2
, 0

)

. (4.9)

So, also each hypermultiplet on these remaining fixed tori gives rise to a chiral multiplet

transforming in the 27 of E6 and singlets.

Repeating our discussion for the remaining two twist sectors, we find that the number

of generations is equal to the number of fixed tori, i.e. 24. Since in the considered case the

Euler number is 48, our result is consistent with the index theorem.

As a next case we study the example of section 3.2. In this case the Euler number

differs from twice the number of fixed tori. First, let us look at the θ2 twisted sector. Again,

there is a hypermultiplet in (56,1) + (1,2) on each of the θ2 fixed tori (3.27)–(3.30). For

points on the first two fixed tori (3.27) and (3.28) the situation is the same as in the

previous example in that these points are mapped onto points in the same torus with four

3Considering an effective six dimensional orbifold GUT it looks a bit strange that we have two sets with

four fixed points in each set. However, such an effective six dimensional orbifold GUT is obtained by taking

the volume of the fixed torus to be much larger than the volume of the remaining compact space (by tuning

metric moduli). Then shifts of the form (4.8) appear as an effective symmetry x → x + 1 resulting in a

compactification torus whose lattice is generated by (1, 0) and (0, 1). On that smaller torus some fixed

points become indistinguishable, and the effective six dimensional orbifold GUT is compactified on T 2/Z2.
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points being invariant. Hence, these two fixed tori result in two chiral multiplets in the 27

of E6 plus singlets. The same happens for fixed tori of the form
{(

x, y, 0, 0,
1

2
,
1

2

)
∣
∣ x, y ∈ R

2/Λ2

}

, (4.10)

{(

x, y, 0, 0,
1

2
,−1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, (4.11)

giving rise to two more chiral multiplets in the 27 and singlets. For the remaining four

fixed tori
{(

x, y, 0,
1

2
, 0,

1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, (4.12)

{(

x, y, 0,
1

2
, 0,−1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, (4.13)

the situation is different. Points in tori of the form (4.12) are mapped to points on tori of

the form (4.13). This means that projection conditions identify hypermultiplets, leading to

two massless hypermultiplets in four dimensions. In N = 1 language, one hypermultiplet

decomposes into a chiral multiplet in the 27, a chiral multiplet in the 27 and singlets.

Hence, we get two generations and two anti-generations from the twisted states on (4.12)

and (4.13). By employing the symmetry between the two SO(6) factors in the compacti-

fication lattice, we deduce that the θ1 twisted sector also gives six chiral multiplets in the

27 and two chiral multiplets in the 27, with a net number of four generations.

θ1θ2 fixed tori are listed in (3.36)–(3.36). Points on each of these tori are mapped onto

points on the same torus. Hence, the number of generations coming from the θ1θ2 twisted

sector is four.

In summary, for the example of section 3.2 we obtain 18 generations and six anti-

generations, from twisted sectors. This relates to the topological data as follows: The net

number of generations equals half the Euler number and the surplus in the number of fixed

tori provides pairs of generations and anti-generations.

In the example of section 3.3, points on a fixed torus are always mapped on points of

the same torus. The number of generations is equal to the number of fixed tori, which is

the same as half the Euler number.

Finally, we discuss the example of section 3.4. The tori fixed under the action of θ2

are listed in (3.61)–(3.64). Points on the first two fixed tori, (3.61) and (3.62), are mapped

on points of the same torus by θ1. Hence, these two tori give rise to two generations in

four dimensions. On the other hand, θ1 maps points on the fixed torus (3.63) to points

on (3.64). These two tori result in a generation and an anti-generation. Repeating the

discussion for the other orbifold twist, we find from twisted sectors nine generations and

three anti-generations. The net number six coincides with half the Euler number.

We summarise our examples in table 1, where we also added the untwisted sector

providing three generations and three anti-generations. In addition, the number of fixed

tori and the Euler number is listed in table 2.

These results can be confirmed by deriving projections from modular invariance as was

done in [12] and extended in [39] for the case of fixed tori and non factorisable lattices. The
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Lattice from section: (generations , anti-generations) net number of generations

3.1 (SO(12)) (27,3) 24

3.2 (SO(6)2-A) (19,7) 12

3.3 (SO(6)2-B) (15,3) 12

3.4 (SU(3)3) (12,6) 6

Table 1: Number of generations for standard embedding.

Lattice from section: fixed tori Euler number

3.1 (SO(12)) 24 48

3.2 (SO(6)2-A) 20 24

3.3 (SO(6)2-B) 12 24

3.4 (SU(3)3) 12 12

Table 2: Number of fixed tori and Euler number.

strategy is to split the partition function into various pieces corresponding to different twist

sectors and different insertions of orbifold group elements into the trace. Such splitting

mixes under modular transformations and hence modular invariance fixes numerical factors

in front of some terms. The number of generations and anti-generations can be deduced

by identifying contributions from chiral and anti-chiral fermions to the trace.

A subtlety for non factorisable compactifications is the existence of contributions in

which winding and momentum sums are not over mutually dual lattices. For instance, in

the trace over untwisted states with a θi insertion only windings on an invariant sublattice

contribute, whereas momenta are constrained to an invariant sublattice of the dual com-

pactification lattice. The latter is the dual of a θi projected lattice which differs from the θi

invariant lattice in the non factorisable case. Modular invariance relates that contribution

to the θi twisted sector. There, windings are constrained to the θi projected lattice, since

strings have to close only up to a θi identification. (The invariant lattice is a sublattice

of the projected lattice.) Momenta, on the other hand, take values on the dual of the θi

invariant lattice which spans the θi fixed torus.

Thus we observe that the two contributions discussed above are related by interchang-

ing winding and momenta and dualising the involved lattices. This can be achieved by

Poisson resummation and hence corresponds to modular transformations. Numerical fac-

tors equal to ratios of the volumes of invariant and projected lattices appear, and this

explains the lattice dependence in the number of families and anti-families. (We have

carried out a detailed analysis of all cases discussed in this paper and found the correct

numerical factors.)

Another subtlety which we did not mention so far is the ambiguity in the choice of

sign for some of the different contributions to the partition function. This corresponds to

the inclusion of discrete torsion [43, 42, 44]. In the Z2 × Z2 case the terms in question

are traces over θi twisted sectors with θj (i 6= j) insertions. In these traces chiral and

anti-chiral fermions contribute with opposite signs. Hence, switching on and off discrete
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torsion just swaps the number of families with the number of anti-families (see [42]). As

discussed in [44], for the factorisable case, this corresponds to replacing the Hodge diamond

by its mirror. Our discussion suggests that the cases with and without discrete torsion are

related by mirror symmetry also if the underlying T 6 does not factorise.

Finally, a comment about non-standard embeddings is in order. Since we discussed

each twisted sector separately it should be straightforward to modify our considerations for

the other consistent choices of the orbifold embedding into the gauge group (listed in [17]).

5. A three generation model

In this section we present a concrete three generation model with an unbroken SO(10)

gauge group. The orbifold will be standard embedded and from the previous section it is

clear that we need to add Wilson lines [9]. The number of models with Wilson lines is large

and, in order to ease our task, we seek some intuition.

First, we will focus on models with SO(10) gauge group. This simplifies the counting

of generations since one generation corresponds to a 16 dimensional representation. From

a phenomenological perspective, the construction of SO(10) models can be viewed as a

step towards obtaining realistic models. This is suggested by the free fermionic models

discussed in section two, as well as the geometric picture [8, 16].

Secondly, we borrow some more intuition from the free fermionic construction by look-

ing for models where each twisted sector provides one generation. For Z3 orbifolds, models

where the number of generations is associated to the number of complex extra dimen-

sions [9] as well as to multiplicities of twisted sectors [45] have been constructed. In the

Z2×Z2 case, however, most of the known three generation models [8] do not exhibit such a

structure. The untwisted spectrum is always non chiral and trying to associate the number

of generations to the complex number of extra dimensions is hopeless.

So, it remains to look for models where the three twisted sectors contribute one gen-

eration each. As we will argue now, the fact whether or not the underlying T 6 factorises

into the product of three T 2 is essential in that context. In order to break the E6 gauge

symmetry down to SO(10) one needs to turn on a Wilson line removing the 16 dimensional

spinors of SO(10) from the adjoint of E6. In the case of a factorisable T 6, the cycle along

which this Wilson line is turned on will be invariant under one of the three non trivial

Z2 × Z2 elements. Within the corresponding twisted sector, the Wilson line will impose a

projection removing the 16 dimensional representations of SO(10). Thus that sector cannot

contribute to the number of generations.4

For non factorisable tori, on the other hand, there exist cycles which are invariant

under none of the three non trivial Z2 ×Z2 elements. Turning on the Wilson line breaking

E6 to SO(10) on such a cycle does not necessarily remove 16 representations from one of

the twisted sectors.

4Our argument can be evaded by a more baroque embedding of SO(10) into E6. An example is reported

in [46]. We thank Patrick Vaudrevange for drawing our attention to that possibility.
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In the explicit calculation one has to determine the contribution from each fixed torus

to the spectrum. So, as a final simplification, we focus on models with a minimal number

of fixed tori.

Therefore, we consider the SO(6)2 lattice of section 3.3 where we will indeed find a three

generation model with SO(10) gauge symmetry. Before giving the details of that model,

let us discuss consistency conditions for the Wilson lines. For the present considerations it

is useful to view the Wilson line as a vacuum expectation value for an internal gauge field

component, Ai, where the index labels directions along lattice vectors (3.50) (see also (2.7)

for the notation). For discrete Wilson lines the value of Ai can differ from its orbifold

image only by E8×E8 root lattice vectors [9]. In order to find the resulting consistency

condition we state the orbifold action on the vectors generating the SO(6)2 lattice (3.50)

θ1 :

e1 → −e1,

e2 → −e3,

e3 → −e2,

e4 → −e4,

e5 → −e6,

e6 → −e5,

θ2 :

e1 → e1 + e2 + e3,

e2 → −e2,

e3 → −e3,

e4 → e4 + e5 + e6,

e5 → −e5,

e6 → −e6.

(5.1)

Hence we find the following consistency conditions

2Ai, A2 + A3, A5 + A6 ∈ ΛE8×E8
, i = 1, . . . , 6, (5.2)

where ΛE8×E8
denotes the E8×E8 root lattice. The other condition which has to be satisfied

comes from modular invariance (see e.g. [12]).

Adopting the notation of e.g. [8] we characterise the standard embedding by the shift

vectors

V1 =

(
1

2
,−1

2
, 06

)
(
08

)
, V2 =

(

0,
1

2
,−1

2
, 05

)
(
08

)
. (5.3)

Further, we turn on the following set of consistent Wilson lines

A1 =
(
08

)
(

03,
1

2
,
1

2
,−1

2
,−1

2
, 0

)

, (5.4)

A2 = A3 =
(
07, 1

) (
1, 07

)
, (5.5)

A4 =
(
08

)
(

0,−1

2
,−1

2
, 0, 0,

1

2
,
1

2
, 0

)

, (5.6)

A5 = A6 =
(
08

)
(

0,
1

2
,
1

2
,−1

2
,−1

2
, 03

)

. (5.7)

For the computation of the twisted sectors one has to identify the space group element

leaving a given torus invariant. For instance, the torus (3.51) is fixed under the rotation by

θ2, whereas for the tori (3.52), (3.53), (3.54) the rotation by θ2 has to be supplemented by

a shift with e3, e6, e3 +e6, respectively. With these remarks the calculation of the massless

spectrum follows straightforward modifications of standard techniques and we refrain from

giving a detailed step by step presentation. Instead, we just report the result.
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The metric and B field moduli are gIJ and bIJ with (I, J) = (1, 2), (3, 4) or (5, 6),

where the indices I, J label Cartesian coordinates. We choose these moduli to be different

from their selfdual values in order not to have to report more massless states than necessary.

The untwisted spectrum gives rise to an N = 1 vector multiplet in the adjoint of

SO(10) × U(1)3 × SU(2)8, (5.8)

where the SO(10) and U(1) factors come from the first E8 factor whereas the SU(2) factors

originate from the second (hidden) E8 factor. The three U(1) factors are generated by the

first three Cartan operators of the first E8: H1, H2, H3. The remaining Cartan generators

of the first E8, H3, . . . ,H8, form the Cartan Subalgebra of SO(10). Denoting the Cartan

generators of the second E8 by H9, . . . ,H16 we arrange the eight SU(2) factors according

to the following order of their Cartan generators:

H9+H16,H9−H16,H10+H11,H10−H11,H12+H13,H12−H13,H14+H15,H14−H15. (5.9)

Below we will characterise representations of the unbroken gauge group (5.8) by an ordered

nonet containing the dimensionality of the SO(10) representation followed by the dimen-

sionalities of the SU(2)8 representation. A sequence of n consecutive entries being 1 will

be abbreviated by 1n. Further, a triple subscript will denote the U(1) charges.5

In the untwisted sector one finds chiral multiplets transforming as

(
10;18

)

1,0,0
+

(
1;18

)

0,1,1
+

(
1;18

)

0,1,−1
+ Charge Conjugate, (5.10)

(
10;18

)

0,1,0
+

(
1;18

)

1,0,1
+

(
1;18

)

1,0,−1
+ Charge Conjugate, (5.11)

(
10;18

)

0,0,1
+

(
1;18

)

1,1,0
+

(
1;18

)

1,−1,0
+ Charge Conjugate, (5.12)

where (5.10), (5.11), (5.12) correspond to the first, second and third complex plane, re-

spectively.

Now, we turn to the θ1 twisted sector. The four θ1 fixed tori are

{
(0, 0, 0, 0, x, y)

∣
∣ x, y ∈ R

2/Λ2
}

, (5.13)
{(

1

2
, 0,

1

2
, 0, x, y

)
∣
∣x, y ∈ R

2/Λ2

}

, (5.14)

{(

0,
1

2
, 0,

1

2
, x, y

)
∣
∣x, y ∈ R

2/Λ2

}

, (5.15)

{(
1

2
,
1

2
,
1

2
,
1

2
, x, y

)
∣
∣ x, y ∈ R

2/Λ2

}

. (5.16)

On each of these tori massless chiral multiplets are localised. Below, we list the represen-

tations in which they transform:

5For the impatient reader: The important part of the result is that we find one 16 dimensional repre-

sentation of SO(10) in each twisted sector. These representations are localised on fixed tori situated at the

origin of the remaining four directions.
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• torus (5.13):

(
16;18

)

0,0, 1
2

+
(
10;18

)

− 1

2
,− 1

2
,0

+
(
1;18

)

1

2
, 1
2
,1

+
(
1;18

)

1

2
, 1
2
,−1

+

2
(
1;18

)

1

2
,− 1

2
,0

+ 2
(
1;18

)

− 1

2
, 1
2
,0

, (5.17)

• torus (5.14):

(
1;2,1,2,15

)

− 1

2
, 1
2
,0

+
(
1;1,2,1,2,14

)

− 1

2
, 1
2
,0

+
(
1;14,2,1,2,1

)

1

2
,− 1

2
,0

+
(
1;15,2,1,2

)

1

2
,− 1

2
,0

, (5.18)

• torus (5.15):

(
1;2,13,2,1

)

1

2
,− 1

2
,0

+
(
1;12,2,13,2,1

)

1

2
,− 1

2
,0

+
(
1;1,2,13,2

)

− 1

2
, 1
2
,0

+
(
1;13,2,13,2

)

− 1

2
, 1
2
,0

, (5.19)

• torus (5.16):

(
1;2,15,2,1

)

1

2
,− 1

2
,0

+
(
1;1,2,15,2

)

1

2
,− 1

2
,0

+
(
1;12,2,1,2,13

)

− 1

2
, 1
2
,0

+
(
1;13,2,1,2,12

)

− 1

2
, 1
2
,0

. (5.20)

So, there is one generation on the torus (5.13).

In the θ2 twisted sector one finds chiral multiplets localised on the tori (3.51)–(3.54).

The representations are

• torus (3.51):

(
16;18

)

1

2
,0,0

+
(
10;18

)

0,− 1

2
,− 1

2

+
(
1;18

)

1, 1
2
, 1
2

+
(
1;18

)

−1, 1
2
, 1
2

+

2
(
1;18

)

0, 1
2
,− 1

2

+ 2
(
1;18

)

0,− 1

2
, 1
2

, (5.21)

• torus (3.52):

(
1;2,2,16

)

0,− 1

2
,− 1

2

+
(
1;12,2,2,14

)

0,− 1

2
,− 1

2

+
(
1;14,2,2,12

)

0, 1
2
, 1
2

+
(
1;16,2,2

)

0, 1
2
, 1
2

, (5.22)

• torus (3.53):

(
1;1,2,15,2

)

0,− 1

2
, 1
2

+
(
1;13,2,1,2,12

)

0,− 1

2
, 1
2

+
(
1;2,15,2,1

)

0, 1
2
,− 1

2

+
(
1;12,2,1,2,12

)

0, 1
2
,− 1

2

, (5.23)

• torus (3.54):

(
1;2,16,2

)

0, 1
2
, 1
2

+
(
1;1,2,14,2,1

)

0, 1
2
, 1
2

+
(
1;12,2,12,2,12

)

0,− 1

2
, 1
2

+
(
1;13,2,2,13

)

0,− 1

2
, 1
2

. (5.24)
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There is one generation coming from the θ2 twisted sector localised on the torus (3.51).

θ1θ2 twisted sector states are localised on the following four tori:

{
(0, 0, x, y, 0, 0)

∣
∣ x, y ∈ R

2/Λ2
}

, (5.25)
{(

1

2
, 0, x, y,

1

2
, 0

)
∣
∣x, y ∈ R

2/Λ2

}

, (5.26)

{(

0,
1

2
, x, y, 0,

1

2

)
∣
∣x, y ∈ R

2/Λ2

}

, (5.27)

{(
1

2
,
1

2
, x, y,

1

2
,
1

2

)
∣
∣ x, y ∈ R

2/Λ2

}

. (5.28)

The corresponding massless chiral multiplets transform as:

• torus (5.25):

(
16;18

)

0, 1
2
,0

+
(
10;18

)

− 1

2
,0,− 1

2

+
(
1;18

)

1

2
,1, 1

2

+
(
1;18

)

1

2
,−1, 1

2

+

2
(
1;18

)

1

2
,0,− 1

2

+ 2
(
1;18

)

− 1

2
,0, 1

2

, (5.29)

• torus (5.26):

(
1;2,12,2,14

)

1

2
,0, 1

2

+
(
1;1,2,2,15

)

1

2
,0, 1

2

+
(
1;14,2,12,2

)

− 1

2
,0,− 1

2

+
(
1;15,2,2,1

)

− 1

2
,0,− 1

2

, (5.30)

• torus (5.27):

(
1;2,1,2,15

)

− 1

2
,0, 1

2

+
(
1;1,2,1,2,14

)

1

2
,0,− 1

2

+
(
1;14,2,1,2,1

)

− 1

2
,0, 1

2

+
(
1;15,2,1,2,

)

1

2
,0,− 1

2

, (5.31)

• torus (5.28):

(
1;2,2,16

)

− 1

2
,0,− 1

2

+
(
1;12,2,2,14

)

1

2
,0, 1

2

+
(
1;14,2,2,12

)

1

2
,0, 1

2

+
(
1;16,2,2

)

− 1

2
,0,− 1

2

. (5.32)

There is one generation localised on the fixed torus (5.25).

The important part of the above spectrum is that there is one generation from each

twisted sector, yielding the observed value of three generations in total. We have listed

also all the other details of the spectrum, because these enable one to perform non trivial

consistency checks. In the case at hand, all factors in the unbroken gauge group are anomaly

free. For the three U(1) factors this is a non trivial statement and we have checked that

the corresponding 36 triangle diagrams indeed vanish.

To conclude, let us summarise how the construction worked. By the standard embed-

ded orbifold one of the E8 factors is broken to E6. The Wilson line (5.5) is responsible

for breaking E6 down to SO(10), whereas all the remaining Wilson lines remove 16 or 16
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representations from all but one of the four fixed tori in each twisted sector. Since we did

not want to break SO(10) further, we have chosen them such that they break only the

hidden sector gauge group. It is conceivable that, alternatively, one can choose some of the

additional Wilson lines such that SO(10) is broken further to its Standard Model subgroup

and, simultaneously, keep the three 16 dimensional representations providing the Standard

Model matter plus three right handed neutrinos. This construction is to be carried out in

the near future [47].

6. Conclusions and outlook

The present paper started by summarising the free fermionic constructions of four dimen-

sional heterotic string theories. We argued that the impressive success in reproducing

essential features of real particle physics should encourage us to seek similar features in

Z2 × Z2 orbifold compactifications of heterotic string theory. In particular, free fermionic

constructions suggest that the underlying six-dimensional compactification lattice should

be the SO(12) root lattice.

Motivated by the above observations, we studied the geometric properties of Z2 × Z2

orbifolds of several non factorisable six-tori. In great detail, we discussed how to compute

the number of fixed tori and the Euler number. Subsequently, we related these data to

the particle spectrum, if the orbifold is standard embedded into the gauge group. Without

Wilson lines there are no three generation models.

By introducing discrete Wilson lines [9], one can break the gauge group and, simul-

taneously, reduce the number of generations. We observed that for Z2 × Z2 orbifolds on

non factorisable tori one can easily find models where each of the three twisted sectors

contributes exactly one generation, whereas this is difficult in the case that the under-

lying T 6 factorises into a product of three T 2. This supports the conjecture that free

fermionic constructions are related to Z2 × Z2 orbifolds of non factorisable tori since also,

in free fermionic models, cases with the same distribution of the three families exist. We

illustrated the discussion by the explicit presentation of a Z2 × Z2 orbifold of T 6 whose

compactification lattice is a root lattice of SO(6)2.

There are several directions to be explored in future work. To make explicitly contact

to the quasi-realistic free fermionic models [24 – 28], one should consider the SO(12) root

lattice as a compactification lattice. Realising these models in the orbifold language would

not only improve our understanding of the correspondence between the two schemes, but

also provide insight to deformations away from the free fermionic point. Orbifold construc-

tions would benefit as well, since the free fermionic approach is suitable for a classification

of models [35, 36]. One can then envision a one-to-one map between the string vacuum in

the fermionic and orbifold representations. Such a map will be instrumental in elucidating

the phenomenological and cosmological properties of specific string vacua in this class.

Moreover, we have seen that, in general, non factorisable compactifications are promis-

ing in their own right. For instance, by modifying the set of Wilson lines in our construction,

it should be not too difficult to find a three generation standard like model for which matter

is naturally embedded into 16 dimensional representations of an underlying SO(10). That
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guaranties a correct prediction for the hypercharges. Such a model should then undergo

further tests checking its relevance for the description of the real world.

Our investigations clearly show that Z2×Z2 orbifolds of non factorisable six-tori should

be well received into the class of phenomenologically promising string vacua.
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